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The  ex terna l  po ten t ia l  needed  to p r o d u c e  an  a rb i t ra ry  equ i l ib r ium densi ty  
profile for  a one -d i mens i ona l  latt ice gas with neares t  ne ighbo r  in te rac t ions  
is solved exactly.  T h e  resu l t ing  sequence  o f  direct  cor re la t ion  func t ions  is 
s h o w n  to be o f  sho r t  range ,  and  in the  f e r romagne t i c  case the  even 
m e m b e r s  a l te rna te  in s ign at  zero spin.  The  even Urse l l  d i s t r ibu t ions  in 
this  case l ikewise a l te rna te  in sign. 

KEY WORDS:  Ising model; lattice gas; nonuniform; one-dimensional; 
external field; Ursell distributions; direct correlations. 

1. INTRODUCTION 

Major progress has been made in recent years toward the elucidation of the 
structure of bulk systems in classical equilibrium statistical mechanics. 
Increasing attention is now being paid <1> to the modifying role of spatial 
inhomogeneity, both for its obvious relevance to the physical world, and as a 
powerful theoretical tool. An important step in investigations of this kind is 
the development of exactly solvable model systems, as a check on possible 
approximations and for the suggestions they may make. One-dimensional 
models are of course the simplest to derive <2> and can prove very useful, if 
used with discretion. 

In this paper, we shall treat perhaps the simplest nontrivial one-dimen- 
sional model, that of an Ising model, or lattice gas with nearest neighbor 
interactions in an arbitrary external field. We shall proceed by solving the 
inverse problem of the potential required to evoke a given density profile, and 
then use standard functional derivative techniques ~3> to generate the direct 
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correlation and Ursell correlation sequences. The short-range character of 
the former will be seen to be maintained in the face of nonuniformity. In 
addition, a number of  positivity properties of both sequences will be 
established. 

2. F O R M U L A T I O N  OF E Q U A T I O N S  

The equilibrium statistical mechanics of  a lattice gas on the integer 
lattice - X ~ x ~< Y is determined by the grand canonical partition function 

f [7 ]} E = ~" exp -/3 Ju(x)v(x + 1) + u(x)u(x) (1) 
( v ( x ) = O , 1 ; - X N x < Y }  - X  

Here, u(x) is the external potential (including chemical potential), /3 is the 
reciprocal temperature, and the interaction has been limited to translation- 
invariant, nearest neighbor potential with strength J. In this notation, J < 0 
signifies ferromagnetic interaction. The various distribution functions arise 
from fixing appropriate summation variables v(x), but we will not need more 
than one to be fixed. Thus, it is convenient to decompose (1) into right and 
left fragments: 

Rv(x) = ~ exp{-/3[Jv + u(x + 1)]v(x + 1)} 
{v(y)=O,l;x < y < Y} 

( 2  } x exp -/3 [Jv(y - 1) + u(y)lu(y) (2) 

L,(x) = ~, e x p { - / 3 [ S ,  + u ( x  - 1)]~(x - t)} 
(v(y)=O,l;-X<y<x} 

x exp -/3 [Jv(y + 1) + u(y)]v(y) (3) 

The principal construct that we shall then need is the lattice density o(x) = 
0(ln Z)/e[-flu(x)], o r  

p(x) = (1/Z)e-B=(X)Ll(x)Rl(x) (4) 

We will want to take the limit as X, Y ~ oo. It is easy to see that R~(x) 
increases monotonically as Y increases. To ensure convergence, we note that 
i f J  > 0, exp{-/3[Jv + u(y)]v(y) <~ exp{[-fiu(y)~(y)]. Thus 

Y Y 

R~(x) ~< ~ ~-~ e -~(~,~(~) = 1--[ (1 + e -"~(y)) (5) 
X+I x + l  

converges as long as ~ + 1  e -zu(y) < oo. Similar considerations apply to 
L~(x). For J < 0, (5) remains valid if we replace u(y) by J + u(y). Hereafter, 
then, we assume that X = Y = oe. Another consequence of (5) and the 
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corresponding relation for L~(x) is that, since R~(x), L~(x) 1> 1, we have the 
boundary conditions 

R,(~) = 1 = L,(-oo)  (6) 

and then from (1) 

R , ( - ~ )  = z = L , (o~)  (7) 

To examine the properties of R,(x) and L,(x), it is far easier to work with 
the equations that they satisfy. We have directly from the definitions (2) 
and (3) the vector relations 

R o ( x -  I) e -B"'x> (Ro(x)'~ 
Rl(x 1)) = ( i  e_BJe_e~(x)) (8) ~R~(x)/ 

LI(x)] e- eSe- ~('~- 1) \Ll(x - 1) 

the matrix involved being one of the forms of the usual transfer matrix. (4) 
Equations (8) and (9), together with (6) or (7), are sufficient in principle to 
determine R~(x) and L~(x). However, we will not have to write down the full 
solution--the existence and evaluation of a suitable "constant of motion" 
Mll suffice. In general (M r denoting M-transpose) 

if R ( x -  1)=  W(x)R(x), L (x )=  U(x )L (x -  1), 

where A ( x -  1)W(x)= U(x)rA(x), (10) 

then L(x)rA(x)R(x) = const 

following trivially from L ( x -  1)rA(x-  1)R(x-  1) --L(x - 1)rA(x- 1) 
W(x)R(x) = L ( x -  1)rU(x)rA(x)R(x)= Lr(x)A(x)R(x). In (8) and (9), 
U(x) = W(x - 1) and we may choose 

e -  au(x) ! 

It follows that Lo(x)Ro(x) + e-aU(x)L~(x)R~(x) = const. Evaluating the 
constant by choosing x -+ + 0% we have 

Lo(x)Ro(x) + e-B~'~176 = E (11) 

Indeed, (11) can be derived directly, in the manner of (4). 

3. BASIC SOLUTION 

Our primary objective is to find the relation between u(x) and p(x). We 
will do this by eliminating Lo and Ro from (t 1), and then L1 and R1 via (4) 
and a suitable recursion relation for L~. The process is straightforward. The 
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second components of  (8) and (9) read R l ( x  - 1) = R o ( x )  + e -  t3Se- B"(':)RI(x) 

and L ~ ( x )  = L o ( x  - 1) + e-~Se- tJ~ ' (x-~)L~(x  - 1), so that 

R o ( x )  = R I ( x  - 1) - e - B J e - a " ( X ) R l ( x )  (12a) 

L o ( x  - 1) = L~.(x)  - e -B ' re - -Bu(x-1)Ll (x  --  1) (12b) 

On the other hand, from the relations inverse to (8) and (9), 

R(x) = W(x) - lR(x-  1), L ( x -  t ) =  W ( x -  1)-iL(x) 

W ( x ) - ~ =  ( e - a ' e S ; " ( ' ~  ela'(x' ) / e  a~(X)(e 8 ' - 1 )  (13) 

we have similarly, on taking second components, 

R o ( x  - 1) = R ~ ( x  - 1) - (e -Bs - 1)e-a~ ' (X)Rl(x)  (14a) 

L o ( x )  = L ~ ( x )  - (e  -B" - 1)e-B~'(x-~)L~(x  - -  1) (14b) 

Combining (12) and (14) yields the recursion relations 

R l ( x  - 1) - (1 + e-tJJe-~"(:C))Rl(x)  + (e  - ~ '  - 1 ) e - a ' g x + l ) R l ( x  + 1) = 0 
(15a) 

L l ( x  + 1) - (1 + e -~1e -B~(X) )L l ( x )  + (e -B~ --  1 ) e - B ~ ( x - 1 ) L l ( x  - -  1) = 0 
(15b) 

Let us, in standard notation, set 

e = e -BI, f = e -BJ - 1 (t6) 

Eliminating Ro and Lo from (I 1) through (12a) and (14b), we find 

R I ( x  - 1)L~(x) + e f e - e " ( ' : ) e - B ~ ' ( x - r ~  - 1) 

- -  f e - B ~ ' ( x - 1 ) R l ( x  - 1 ) L l ( x -  1 ) -  f e - B ~ ' ( ~ ) R l ( x ) L l ( x )  = E 

and then using (4) to eliminate R ~ ( x )  and L ~ ( x  - 1), 

R ~ ( x  - 1)L~(x) + e f a 2 p ( x ) p ( x  - 1 ) / R ~ ( x  - 1)L~(x) 

- f E p ( x  - 1) - f E p ( x )  = E 

Thus, if 

K ( x  - 1) --- ( 1 / E ) R I ( x  - 1)Ll(x) (17) 

then 

K ( x  - 1) - [1 + f p ( x  - 1) + . f p ( x ) ]  + e f p ( x ) p ( x  - 1 ) / K ( x  - 1) = 0 (18) 

with the correct root of  (18) determined by 

g ( + m )  = 1 
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But from (15b) and (4), 

e-aU(X)K(x)/p(x) - (1 + ee -a*'(x)) + f p ( x  - 1) /K(x  - t) = 0 

which may be solved [and simplified by (18), since K -  a + b / K  = 0 
i m p l i e s b / K -  c =  a -  c -  K, ( K -  d ) ( K  + d - a )  = d(a - d )  - b] as 

e_B~,,~, = { f p ( x -  1) ] /  (e K(x)~  
\ ~ K ( x  1) 1 7 / _  - p - - ~ ,  

[1 - p(x) + f p ( x  - 1) - K ( x  - 1)][1 - p(x) + f p ( x  + 1) - K(x)] 
e2p(x)[1 - p(x)] 

( t 9 )  

Equations (19) and (18) accomplish the desired end of expressing u(x)  
in terms of  p(x).  Carrying this out explicitly by solving (18) and substituting 
into (19), one has 

e -B'~(x) = E(p(x) ,  p(x  -- 1))E(p(x),  p(x  + 1))/{4e2p(x)[1 - p(x)]} (20) 

where 

E(p, p') --- (1 + e)p + (1 - e)p' - 1 + {[1 + f(p + p,)]2 _ 4efpp,}lj= 

Since (20) is a local relation, it is valid independent of the asymptotic require- 
ments associated with (5). This expression can be put in ultimately neater 
and equally appropriate form by transforming from density to Ising model 
spin expectation values: 

p(x) = �89 + "x) (21) 
resulting instead in 

e-BUCX) = F(ax ,  ax-1)F(~x ,  %+1)/[e2(1 - a~2)] 

where 

F(a, ~') = �89 + 1)~ - �89 + {e + �88 - 2(e + 1)oa' + fa,=]}l/2 (22) 

4. D I R E C T  C O R R E L A T I O N S  

The successive derivatives of  - flu(x) with respect to the density at various 
spatial points are termed the (modified) direct correlation functions. Most 
heavily studied is the pair direct correlation 

C(x, y)  = a[-flu(x)]/at ,(y) (23) 

which must be (and indeed explicitly turns out to be) a symmetric, positive- 
semidefinite matrix. In the present case, differentiating (20) and transforming 
by (21), we find that the only nonvanishing matrix elements are given by 

C ( x  + 1, x)  = C(x ,  x + 1) = - f x ( a , ,  O'X+I) -1/2 

C ( x ,  x )  = [1/(1 - .x=)]{[(e + 1) - f "x - l "Ax( '~x-1 ,  '~x) -lj~ 

+ [(e + 1) -- fa~ax + 1]X(~x, ax + 1)- 1/2} (24) 
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where 

X(~, ~') = e + �88 _ 2(e + 1 ) ~ '  + f~,2] 

Thus, C(x, y)  has precisely the range Ix - y[ ~< 1 o f  the interaction, as in 
the uniform case. Further,  C(x, x + 1) is everywhere negative or positive 
as the interact ion is ferromagnetic  (d < 0 , f  > 0) or antiferromagnetic.  

Since C is positive semidefinite, it can be written in various ways in the 
form 

C = QQr (25) 

A particularly convenient  decomposi t ion is into lower triangular (y  ~< x) 
and upper  tr iangular factors, and since C has range 1, Q may be taken as of  
range 1 as well. This assertion follows from the fact that,  if  assumed true, (25) 
becomes 

C(x, x) = Q(x, x) 2 + Q(x, x - 1) 2 , C(x, x + 1) = Q(x, x)Q(x + 1, x) 
(26) 

implying that  

Q(x, x) 2 =  C(x, x ) -  C ( x -  1, x ) 2 / Q ( x -  1, x -  1) 2 (27) 

may be obtained as a cont inued fraction, which can be shown to converge. (5) 
The  novelty here, perhaps,  is that  Q(x, y)  depends only upon  the local density 
profile. This is most  easily seen by noting that, in (24), 

4X(cr, a') = [(e + 1) -f~rcr'] 2 - f 2 ( 1  - a2)(1 - ~,2) (28) 

and correspondingly rewriting (24) as 

1 
C(x ,  x )  1 - ~x ~ 

(29)  
1 = (q~/Z 1/2)  

C(x, x + l )  (1  - ax2 )X/2 (1  - a ~ + l )  ~/2 - q~7 

where 

e + 1 - fGxax+l  + f ( 1  - .x2)1/2(1 - .2~+1)1/2 
qx = e + 1 - fGxGx+l - - f (1  -- ax2)l/~(1 -- a~+1)1/2 

It fOIIows at once that  (26) is satisfied by 

1 
Q(x ,  x )  (1 - ~ 2)1~ + 

- 1  
Q(x + 1, x) = (1 - cry+l) ~j2 (q~x/4 - q~-l:~) 

as required. 

(30) 
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We now proceed to the higher direct correlations. These may be defined 
in general by (3) 

C~(xl, x2 ..... xs) = ~ - 2 C ( x 1 '  x2) (31) 
~p(x3) ... ~p(x3 

a symmetric function by virtue of  (23), and the symmetry of C(x, y) .  From 
(24), it follows at once that all Ca are of  range 1 : They vanish unless [x~ - x~l ~< 1 
for each pair of arguments. As for their guaranteed signature, let us concen- 
trate on those C~ in which not all arguments are identical. From the short- 
range property, we can assume that the arguments consist in toto of at least 
one x and at least one x + 1. It is convenient then to define 

C.~(x, x + 1) = ~p(x)._ 1 ~p(x + 1) ~-1 C(x, x + 1) (32) 

which, indicating spin density explicitly, means that 

oo , oo z S _  1 w t _  1 

(s --- ])1 (t --- 1)! Cat(x, x + 1) = C(x, x + 1[~ + 2z, o~+~ + 2w) 
0 , 0  

(33) 

an appropriate form for investigating properties of  the whole sequence. 
For a feeling as to what to expect, consider the direct correlations in the 

uniform spin-symmetric case: cr~ = 0 for all x of  interest. According to (24), 
the generating function (33) is then given by 

G(z, w) = - f [ e  + f ( f z  2 - 2(e + 1)zw + fw2)] -1/2 

= - f ~  ( - 1 ) J  J J -  �89 [ f~  - 2(e + 1)zw + fw~lJ (34) 
o J 

C~t of course now vanishes if s + t is odd. Suppose s + t is even. Then if 
f > 0 and z -~  iz, w -+ - iw, all terms in (34) are negative. On the other hand, 
for f < 0 and z ~ z, w-+ - w ,  all terms in (34) are positive. We conclude 
from (33) that 

if ~rx= a~+l = 0  and s +  t is even, st > O, 

then ( - 1 ) ( a - t ) 1 2 C ~ t ( x , x + l ) }  f > 0 0 }  
( - 1 ) t C s t ( x , x +  1) < 0 for f <  (35) 

However, (35) does not hold for the general nonuniform lattice. Consider 
the ferromagnetic case, f > 0, with an extreme antiferromagnetic profile, 
ax = 1, crx+ 1 = - 1 [this requires a limiting value of the field u(x), which is 
of  no consequence]. Now from (24), (33) becomes 

a(z,  w) = - f { ( e  + f z )  2 - 2f[e + (e + 1)z]w + f2w2}-1/2 (36) 
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so that 

G(ze, 7 )  = - f { ( l + f z ) 2 - [ l + ( e + l ) z ] 2 w + w 2 }  -~12 

= - e  w~(1 + )n+l_P~ 1 + 1-'--@ (37) 

where P~ is the nth Legendre polynomial. The w~z 2 term is typical. Since 
P2(1 + t) = �89 2 + 6t + 2), it becomes 

w2z2: - 6(f/e)(f 2 - 4f + 1) (38) 

and so changes sign in the interval 2 - x/3 < f < 2 + V'3. 

5. URSELL D I S T R I B U T I O N S  

The detailed properties of the lattice gas distributions are most often 
expressed by means of the cumulants of the microscopic density v(x), defined 
by the generating function (m 

~-[w] = ~ ( - ~ ) ~  s! ~, F~(xl,..., x3w(x~) ... w(x3 
8 X l , . . . j X  s 

= l n ( e x p { - ~ x  w(x)v(x)) ) (39, 

For a continuum fluid, the Fs would correspond to the so-called modified 
Ursell functions. By virtue of (1), o~[w] may be rewritten as 

Y[wl = ln(r~[u + wl/'~[u]) (40) 

where the external potential in E has been set off in square brackets. It then 
follows from (39) that for s >/ 1 

F~(xl .... , x 0  = a~(ln Z[u]) (41) 
8{- /~u(x0} ... a{- /~u(x3} 

The first two of the sequence (41) are of particular importance. Clearly 
p(x) = <,(x)> = e~[wl/e{-B,(x)}l~,=o, or  

p(x) = e~(x) (42) 

whence 

F~(xl .... , xs) = 8 ~- lp(x~) (43) 
a{-Zu(x~)}  ... a { - Z u ( x 3 }  

Further, if S is the matrix inverse to the pair direct correlation of (23), then 

CS = I or S(x, y) = 8p(x)/a{-fiu(y)} = F2(x, y) (44) 
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It also follows directly from (39) that 

S(x, y) = (v(x)v(y)> - p(x)o(y) = �88 - crx%) (45) 

where 8= = 2v(x) - 1 is the microscopic spin variable, and, as a special case 
of (45), 

S(x, x) = �88 - ax 2) (46) 

Let us consider S(x, y)  in greater detail. Since C(x, y)  is tridiagonal, (44) 
tells us that S(x, y)  satisfies a second-order difference equation. The imposi- 
tion of boundary conditions as x ~ + oo converts this as expected into a 
first-order equation in each appropriate domain. To see this most directly, 
we need only rewrite (44), via (25), as 

Qr S = Q-1 (47) 

But Q is lower triangular, so Q- 1 is as well, with reciprocal diagonal elements. 
Thus we have from (47), 

if x <~ y, 
t (48) 

then O(x, x)S(x, y)  + Q(x + 1, x)S(x + 1, y) = ~ 3~,~ 

Indeed, if x < y, we have S(x, y)  = - [Q(x + 1, x)/Q(x, x)]S(x + 1, y), 
which iterates at once to the relation 

~ - 1  

x <~ y: S(x, y)  = ~ [ -  Q(z + 1, z)/Q(z, z)lS(y, y) (49) 

Inserting (30) and (46), we thus have 

x <~ y: S (x , y )  = + ~ ) ( 1  - %2)1,e (50) 

An immediate consequence is that for ferromagnetic coupling, f / >  0, q~ >/ 1, 
and S(x, y)  >>. O, whereas in the antiferromagnetic case, f ~< 0, q= ~< 1, 
sgn S(x, y) = ( -  1) y-x. An important algebraic consequence of  (50) is that 

if x <~ y <~ z <~ w, 
(51) 

then S(x, z)S(y, w) = S(x, w)S(y, z) 

To generate the remainder of the sequence F~, a pivotal role is played 
by the relation between F3 and/ ;2 .  In order to obtain this, we may first 
introduce the notation, deriving from (I)-(3), 

E(x, y)  ~- ~ v(x)v(y) exp[~u(y)] 
{v ( z )=O,1;x~z~v}  

x exp - f l  [Jr(z) + u(z + 1)]v(z + t) (52) 
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for x ~< y. Direct application of (41) then yields, for x ~< y ~< z, 

p(x) = E ( -  ~ ,  x)E(x,  oo)e-BU(x~/E 

F2(x, y) = E( -oo ,  x)E(x, y)E(y, ~)e-aU(X)e-~(~)/E - p(x)p(y)  (53) 

Fa(x, y, z) = E( -oo ,  x)E(x, y)E(y, z)'~(z, oo)e-B"(X)e-B*'(U)e-~U(~)/E 

- F2(x, y )o (z )  - F2(x, z ) p ( y )  - F~(y, z )p(x)  - p (x )p(y )p(z )  

Solving for E(x,y)  in terms of F2(x, y )  and substituting into Fa, we 
have F3(x, y, z) = F2(x, y)F2(y,  z ) /p(y)  - p(y)F2(x, z), or, using (51) and 
(46), 

Fa(x, y, z) = -%F2(x,  z) (54) 

Indeed, we can couple (54) with (44), writing them as 

aF2(xl, x2) = -ax,F2(x< x>), Oa(xl) - 2F2(xl, x2), (55) 
~{- ~u(x~)} ' ~{ - /~u(x2)}  

where x< ~< x' ~< x>. By virtue of 

aS  - 2 

Fs(xl,. . . ,  xs) = 8{-f lu(xa)} "" a{-flu(xs)} F2(xl,  x2) (56) 

we can thus generate the full sequence of Ursell functions. 
Since (55) affords the symbolic replacement - F 2 - - > ( - , r ) ( - F 2 ) ,  

- o --~ - / ' 2 ,  (56) creates the general form (6~ 

F~ = - e { - F 2 ,  -~} (57) 

where P is a polynomial each of whose monomial terms has positive sign, 
weight s with a of  weight 1, F2 of weight 2, and has each argument present 
just once. I f f  > 0, then/ '2 /> 0, and if a = 0 throughout, F2~ being of degree 
s in the F2 implies that 

f >  0, z = 0 ;  sgn(F2~) = ( - 1 )  s +~ (58) 

(in contrast to the continuum fluid F~ with repulsive forces(7~). This has been 
proven by Rosen (8) and F2~ is exhibited in very explicit form. However, the 
generalization to arbitrary external field does not hold. It is only necessary to 
look at F4 to see this. According to (55) and (56), 

x <~ y <~ z <~ w: F4(x, y, z, w) = - F 2 ( x ,  w)[2F2(y, z) - cr(y)cr(z)] (59) 

and there is no difficulty in rendering this expression positive by selecting 
small F2(x, w), F2(y, z). 
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